3.94 \(\int \tan (c+d x) (a+i a \tan (c+d x))^{3/2} \, dx\)

Optimal. Leaf size=92 \[ -\frac {2 \sqrt {2} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d}+\frac {2 (a+i a \tan (c+d x))^{3/2}}{3 d} \]

[Out]

-2*a^(3/2)*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))*2^(1/2)/d+2*a*(a+I*a*tan(d*x+c))^(1/2)/d+2/3*
(a+I*a*tan(d*x+c))^(3/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 92, normalized size of antiderivative = 1.00, number of steps used = 4, number of rules used = 4, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.167, Rules used = {3527, 3478, 3480, 206} \[ -\frac {2 \sqrt {2} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d}+\frac {2 (a+i a \tan (c+d x))^{3/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(-2*Sqrt[2]*a^(3/2)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/d + (2*a*Sqrt[a + I*a*Tan[c + d*x]]
)/d + (2*(a + I*a*Tan[c + d*x])^(3/2))/(3*d)

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3478

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Simp[(b*(a + b*Tan[c + d*x])^(n - 1))/(d*(n - 1)
), x] + Dist[2*a, Int[(a + b*Tan[c + d*x])^(n - 1), x], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0] && G
tQ[n, 1]

Rule 3480

Int[Sqrt[(a_) + (b_.)*tan[(c_.) + (d_.)*(x_)]], x_Symbol] :> Dist[(-2*b)/d, Subst[Int[1/(2*a - x^2), x], x, Sq
rt[a + b*Tan[c + d*x]]], x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 + b^2, 0]

Rule 3527

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d*
(a + b*Tan[e + f*x])^m)/(f*m), x] + Dist[(b*c + a*d)/b, Int[(a + b*Tan[e + f*x])^m, x], x] /; FreeQ[{a, b, c,
d, e, f, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] &&  !LtQ[m, 0]

Rubi steps

\begin {align*} \int \tan (c+d x) (a+i a \tan (c+d x))^{3/2} \, dx &=\frac {2 (a+i a \tan (c+d x))^{3/2}}{3 d}-i \int (a+i a \tan (c+d x))^{3/2} \, dx\\ &=\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d}+\frac {2 (a+i a \tan (c+d x))^{3/2}}{3 d}-(2 i a) \int \sqrt {a+i a \tan (c+d x)} \, dx\\ &=\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d}+\frac {2 (a+i a \tan (c+d x))^{3/2}}{3 d}-\frac {\left (4 a^2\right ) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{d}\\ &=-\frac {2 \sqrt {2} a^{3/2} \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{d}+\frac {2 a \sqrt {a+i a \tan (c+d x)}}{d}+\frac {2 (a+i a \tan (c+d x))^{3/2}}{3 d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.93, size = 148, normalized size = 1.61 \[ \frac {\sqrt {2} a e^{-\frac {1}{2} i (2 c+3 d x)} \sqrt {1+e^{2 i (c+d x)}} \sqrt {\frac {a e^{2 i (c+d x)}}{1+e^{2 i (c+d x)}}} \left (\cos \left (\frac {d x}{2}\right )+i \sin \left (\frac {d x}{2}\right )\right ) \left (\sqrt {1+e^{2 i (c+d x)}} (4+i \tan (c+d x)) \sec (c+d x)-6 \sinh ^{-1}\left (e^{i (c+d x)}\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]*(a + I*a*Tan[c + d*x])^(3/2),x]

[Out]

(Sqrt[2]*a*Sqrt[(a*E^((2*I)*(c + d*x)))/(1 + E^((2*I)*(c + d*x)))]*Sqrt[1 + E^((2*I)*(c + d*x))]*(Cos[(d*x)/2]
 + I*Sin[(d*x)/2])*(-6*ArcSinh[E^(I*(c + d*x))] + Sqrt[1 + E^((2*I)*(c + d*x))]*Sec[c + d*x]*(4 + I*Tan[c + d*
x])))/(3*d*E^((I/2)*(2*c + 3*d*x)))

________________________________________________________________________________________

fricas [B]  time = 0.44, size = 258, normalized size = 2.80 \[ -\frac {3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a^{3}}{d^{2}}} \log \left (\frac {4 \, {\left (a^{2} e^{\left (i \, d x + i \, c\right )} + {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) - 3 \, \sqrt {2} {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a^{3}}{d^{2}}} \log \left (\frac {4 \, {\left (a^{2} e^{\left (i \, d x + i \, c\right )} - {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )} \sqrt {\frac {a^{3}}{d^{2}}} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}\right )} e^{\left (-i \, d x - i \, c\right )}}{a}\right ) - 2 \, \sqrt {2} {\left (5 \, a e^{\left (3 i \, d x + 3 i \, c\right )} + 3 \, a e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}}}{3 \, {\left (d e^{\left (2 i \, d x + 2 i \, c\right )} + d\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="fricas")

[Out]

-1/3*(3*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a^3/d^2)*log(4*(a^2*e^(I*d*x + I*c) + (d*e^(2*I*d*x + 2*I*c)
+ d)*sqrt(a^3/d^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1)))*e^(-I*d*x - I*c)/a) - 3*sqrt(2)*(d*e^(2*I*d*x + 2*I*c) +
 d)*sqrt(a^3/d^2)*log(4*(a^2*e^(I*d*x + I*c) - (d*e^(2*I*d*x + 2*I*c) + d)*sqrt(a^3/d^2)*sqrt(a/(e^(2*I*d*x +
2*I*c) + 1)))*e^(-I*d*x - I*c)/a) - 2*sqrt(2)*(5*a*e^(3*I*d*x + 3*I*c) + 3*a*e^(I*d*x + I*c))*sqrt(a/(e^(2*I*d
*x + 2*I*c) + 1)))/(d*e^(2*I*d*x + 2*I*c) + d)

________________________________________________________________________________________

giac [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="giac")

[Out]

Timed out

________________________________________________________________________________________

maple [A]  time = 0.14, size = 70, normalized size = 0.76 \[ \frac {\frac {2 \left (a +i a \tan \left (d x +c \right )\right )^{\frac {3}{2}}}{3}+2 a \sqrt {a +i a \tan \left (d x +c \right )}-2 a^{\frac {3}{2}} \sqrt {2}\, \arctanh \left (\frac {\sqrt {a +i a \tan \left (d x +c \right )}\, \sqrt {2}}{2 \sqrt {a}}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x)

[Out]

1/d*(2/3*(a+I*a*tan(d*x+c))^(3/2)+2*a*(a+I*a*tan(d*x+c))^(1/2)-2*a^(3/2)*2^(1/2)*arctanh(1/2*(a+I*a*tan(d*x+c)
)^(1/2)*2^(1/2)/a^(1/2)))

________________________________________________________________________________________

maxima [A]  time = 0.97, size = 102, normalized size = 1.11 \[ \frac {3 \, \sqrt {2} a^{\frac {7}{2}} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right ) + 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {3}{2}} a^{2} + 6 \, \sqrt {i \, a \tan \left (d x + c\right ) + a} a^{3}}{3 \, a^{2} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))^(3/2),x, algorithm="maxima")

[Out]

1/3*(3*sqrt(2)*a^(7/2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c) + a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x
 + c) + a))) + 2*(I*a*tan(d*x + c) + a)^(3/2)*a^2 + 6*sqrt(I*a*tan(d*x + c) + a)*a^3)/(a^2*d)

________________________________________________________________________________________

mupad [B]  time = 4.06, size = 74, normalized size = 0.80 \[ \frac {2\,{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{3/2}}{3\,d}+\frac {2\,a\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{d}-\frac {2\,\sqrt {2}\,a^{3/2}\,\mathrm {atanh}\left (\frac {\sqrt {2}\,\sqrt {a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}}}{2\,\sqrt {a}}\right )}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(tan(c + d*x)*(a + a*tan(c + d*x)*1i)^(3/2),x)

[Out]

(2*(a + a*tan(c + d*x)*1i)^(3/2))/(3*d) + (2*a*(a + a*tan(c + d*x)*1i)^(1/2))/d - (2*2^(1/2)*a^(3/2)*atanh((2^
(1/2)*(a + a*tan(c + d*x)*1i)^(1/2))/(2*a^(1/2))))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (i a \left (\tan {\left (c + d x \right )} - i\right )\right )^{\frac {3}{2}} \tan {\left (c + d x \right )}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(tan(d*x+c)*(a+I*a*tan(d*x+c))**(3/2),x)

[Out]

Integral((I*a*(tan(c + d*x) - I))**(3/2)*tan(c + d*x), x)

________________________________________________________________________________________